Symmetric polynomials over finite fields

نویسندگان

چکیده

It is shown that two vectors with coordinates in the finite q-element field of characteristic p belong to same orbit under natural action symmetric group if each elementary polynomials degree pk,2pk,…,(q−1)pk, k=0,1,2,… has value on them. This separating set polynomial invariants for permutation representation not far from being minimal when q=p and dimension large compared p. A relatively small multisymmetric over q elements derived.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Irreducible Polynomials over Finite Fields

As we will see, modular arithmetic aids in testing the irreducibility of polynomials and even in completely factoring polynomials in Z[x]. If we expect a polynomial f(x) is irreducible, for example, it is not unreasonable to try to find a prime p such that f(x) is irreducible modulo p. If we can find such a prime p and p does not divide the leading coefficient of f(x), then f(x) is irreducible ...

متن کامل

Settled Polynomials over Finite Fields

We study the factorization into irreducibles of iterates of a quadratic polynomial f over a finite field. We call f settled when the factorization of its nth iterate for large n is dominated by “stable” polynomials, namely those that are irreducible under post-composition by any iterate of f . We prove that stable polynomials may be detected by their action on the critical orbit of f , and that...

متن کامل

Symmetric functions over finite fields

The number of linear independent algebraic relations among elementary symmetric polynomial functions over finite fields is computed. An algorithm able to find all such relations is described. The algorithm consists essentially of Gauss’ upper triangular form algorithm. It is proved that the basis of the ideal of algebraic relations found by the algorithm consists of polynomials having coefficie...

متن کامل

Some New Permutation Polynomials over Finite Fields

In this paper, we construct a new class of complete permutation monomials and several classes of permutation polynomials. Further, by giving another characterization of opolynomials, we obtain a class of permutation polynomials of the form G(x) + γTr(H(x)), where G(X) is neither a permutation nor a linearized polynomial. This is an answer to the open problem 1 of Charpin and Kyureghyan in [P. C...

متن کامل

Search of Primitive Polynomials over Finite Fields

Let us introduce some notations and definitions: if p denotes a prime integer and n a positive integer, then GF(p”) is the field containing pn elements. a primitive element of GF(p”) is a generator of the cyclic multiplicative group GVP”)*, a manic irreducible polynomial of degree n belonging to GF(p)[X] is called primitive if its roots are primitive elements of GF(p”). These polynomials are in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Finite Fields and Their Applications

سال: 2023

ISSN: ['1090-2465', '1071-5797']

DOI: https://doi.org/10.1016/j.ffa.2023.102224